top of page

Dr. Florentino López Urías

Main Area of Expertise: Nanoscience and Nanotechnology: Magnetism

Work Address: Camino a la Presa San José 2055, Col. Lomas 4ª Sección C.P. 78216, San Luis Potosí, S.L.P., México.

Work Phone: +52 (444) 8342000 ext. 7238

Electronic mail: flo@ipicyt.edu.mx, flo.lopezurias11@gmail.com.

Welcome to López-Urías group, our research is focused on the study of the electronic properties of diverse carbon and transition metal nanostructures. Theoretical methods such as density functional theory, tight-binding, force-fields, among others are used to describe magnetic, optical, structural, and catalytic properties of fullerenes, carbon nanotubes, graphene, carbon nanoribbons, carbon clusters, transition metal (TM) chalcogenide layered materials,  TM-clusters, TM-wires, etc. We have a special interest in the development of spintronic and valleytronic topics in nanomaterials.

 

   RECENT PUBLICATIONS:

  1. Elias Andrade, Florentino López-Urías, Gerardo G. Naumis. Topological origin of flat-bands as pseudo-Landau levels in uniaxial strained graphene nanoribbons and induced magnetic ordering due to electron-electron interactions. PHYSICAL REVIEW B 107, 235143 (2023).

  2. Francisco Sánchez-Ochoa,  Alberto Rubio-Ponce, Florentino López-Urías. Pressure-induced reentrant Dirac semimetallic phases in twisted bilayer graphene. PHYSICAL REVIEW B 107, 045414 (2023).

  3. Armando D. Martínez-Iniesta, E. Muñoz-Sandoval, J. P. Morán-Lázaro, A. Morelos-Gómez, F. López-Urías. Zigzagging Graphitic Nanofibers: Synthesis, Characterization, and Acetone Vapor Sensing. DIAMOND & RELATED MATERIALS 138, 110209 (2023).

  4. Daniel Salgado-Blanco, Diana S. M. Flores-Saldaña, Fabiola Jaimes-Miranda, Florentino López-Urías. Electronic and Magnetic Properties of TATA-DNA Sequence Driven by Chemical Functionalization. JOURNAL OF COMPUTATIONAL CHEMISTRY 44 (12), 1199-1207 (2023).

Imagen1.jpg

RESEARCH TOPICS

 

  • Thermodynamics in magnetic nanostructures and clusters

  • Electron emission and transport  properties of nanostructures

  • Design and simulation of new nanostructured magnetic materials

  • Chemical doping in carbon nanostructures

  • Magnetic alloys of nanostructured systems

  • Design of new magnetic laminar systems

  • Design and simulation of magnetic molecular systems

  • Nanostructured magnetic quasicrystals

 

THEORETICAL MODEL SKILLS

 

  • Hubbard model (exact calculations)

  • Quantum Heisenberg model (exact calculation)

  • Classical Heisenberg model (Monte Carlo Simulation)

  • Modeling from first principles and Molecular Dynamics

  • Ising model (exact calculations)

  • Hubbard-Holstein model (electron-phonon interaction)

  • Super-exchange model type Kondo (Monte Carlo Simulations)

  • Hückel and extended Hückel model

  • Micromagnetism (Dynamic Simulation of Magnetization)

NUMERICAL METHODS AND SOFTWARE

 

  • Method of Lanczos (diagonalization of large matrices)

  • Monte Carlo method (minimum energy surfaces)

  • Genetic algorithms method (geometric optimization)

  • SIESTA and TRANSIESTA codes (Electronic structure, Base: LCAO)

  • ABINIT code (calculations of electronic structure, Base: P-Waves)

  • OOMMF code (micromagnetism, Equation Landau-Lifshitz-Gilbert)

  • PWSCF code (calculations of electronic structure, plane waves)

  • GULP (Force-field calculations

  • YAMBO (Many-body perturbation theory: GW and BSE calculations)

 

cover-arriba.jpg
bottom of page